Thermal reaction of diastereomeric benzocyclobutenols. Evidence for reversible opening of 1,2-dihydrobenzocyclobutenols to hydroxy-*o*-xylylenes

Etsuya Kawata, Masaichi Saito and Michikazu Yoshioka*

Department of Chemistry, Faculty of Science, Saitama University, Shimo-okubo, Urawa, Saitama 338-8570, Japan

Received (in Cambridge, UK) 18th October 1999, Accepted 21st January 2000

Thermolysis of 1,2-dihydrobenzocyclobutenols **2a,b** or **3a**–c without solvent at 120 °C gave a 1:1 mixture of **2a**–c and **3a**–c together with 3-hydroxy-2,2-dimethyl-1-(*o*-methylphenyl)alkan-1-ones **1a**–c and *o*-methylisobutyrophenone **5**. Thermolysis of **2a** or **3a** under the same conditions but at 150 °C gave only **5**. Thermolysis of **2c** or **3c** in benzene- d_6 at 120 °C resulted in clean interconversion between **2c** and **3d**–f together with 3-acetoxy-2,2-dimethyl-1-(*o*-methylphenyl)alkan-1-ones **1a**–c and *a*–methylpheny

It is well known that benzocyclobutenes undergo an electrocyclic ring opening of the four-membered ring to generate o-xylylenes. The o-xylylenes are so reactive that they react with various dienophiles to give [4 + 2] cycloadducts¹ or undergo dimerization.² The inter- and intramolecular cycloaddition reactions of o-xylylenes have been used in the synthesis of polycyclic ring systems.³ Thermolysis of benzocyclobutenols affords hydroxy-o-xylylenes,⁴ the geometry of which has been investigated by the analysis of the adduct with maleic anhydride or Nphenylmaleimide.^{4a} The benzocyclobutenol preferentially opens to produce the (E)-dienol. Although the reaction of (E)-dienols in the presence of dienophiles has been widely studied,⁵ there are few reports on recyclization of dienols generated from benzocyclobutenols. Sammes and co-workers reported that heating optically active 1-methyl-1,2-dihydrobenzocyclobutenol at 110 °C readily gave 2-methylacetophenone because the intermediary (E)-dienol underwent proton transfer faster than recyclizationtoproduceracemic1-methyl-1,2-dihydrobenzocyclobutenol.4a We report here the thermal interconversion of diastereomeric 1,2-dihydrobenzocyclobutenols 2 and 3, which are prepared by photocyclization of 3-hydroxy- and 3-acetoxy-2,2dimethyl-1-(o-methylphenyl)alkan-1-ones 1.

Results and discussion

Irradiation of the hydroxy ketone 1a in methanol with Pyrexfiltered light gave two diastereomeric 1,2-dihydrobenzocyclobutenols 2a and 3a together with trans- and cis-cyclopropane-1,2-diols 4 (Scheme 1).⁶ The 1,2-dihydrobenzocyclobutenols 2a and **3a** could be isolated by column chromatography on silica. The configuration of 2a was determined by X-ray crystallographic analysis to be $(3S^*, 1'S^*)$, so that **3a** had the $(3S^*, 1'R^*)$ configuration. The ¹H NMR spectrum of **2a** showed peaks due to two methylene protons of the four-membered ring as an AB quartet at δ 2.96 and 3.60 and two methyl singlets on C-2 at δ 0.78 and 1.13, whereas that of **3a** showed two methylene protons at δ 3.03 and 3.55 and two methyl singlets at δ 0.71 and 1.25. The two methylene signals of **2a** were further apart than those of 3a and the two methyl singlets of 2a were closer than those of **3a**. Irradiation of hydroxy ketones **1b**,**c** under the same conditions also gave two diastereomeric 1,2-dihydrobenzocyclobutenols 2b,c and 3b,c, the configurations of which could be

Scheme 1 Condition: i, hv.

assigned by comparison of their ¹H NMR spectra to those of **2a** and **3a**. Irradiation of acetoxy ketones **1d**–**f** under the same conditions also gave two diastereomeric benzocyclobutenols **2d**–**f** and **3d**–**f** in 95% yield. The configurations of these compounds were determined by the X-ray crystallographic analyses of **3d**, **2e**⁷ and **2f**. Results of the photochemical reaction of hydroxy and acetoxy ketones **1a**–**f** are given in Table 1.

When the $(3S^*, 1'S^*)$ -1,2-dihydrobenzocyclobutenol **2a** was heated at 120 °C in a sealed glass tube and the progress of the reaction was monitored by ¹H NMR, the gradual disappearance of 2a was observed together with the gradual formation of the $(3S^*, 1'R^*)$ -1,2-dihydrobenzocyclobutenol **3a** as well as with the formation of small amounts of the hydroxy ketone 1a and o-methylisobutyrophenone 5 (Scheme 2). After 20 h, a thermal equilibrium between 2a and 3a was established, where the 2a: 3a ratio was 1:1. The yields of the mixture of 2a and 3a, the hydroxy ketone 1a and o-methylisobutyrophenone 5 were 93, 2 and 5%, respectively. Heating the $(3S^*, 1'R^*)$ -1,2dihydrobenzocyclobutenol 3a under the same conditions for 20 h also gave the 1:1 mixture of **2a** and **3a** together with small amounts of 1a and 5. However, when 2a or 3a was heated under the same conditions but at 150 °C for 10 h, only 2-methylisobutyrophenone 5 was obtained. At 150 °C, the 1,2-dihydrobenzocyclobutenols 2a and 3a were converted completely into

DOI: 10.1039/a908326j

J. Chem. Soc., Perkin Trans. 1, 2000, 1015–1019 1015

Scheme 2 Conditions: i, 120 °C; ii, 150 °C.

the hydroxy ketone **1a** which further underwent retro-aldol cleavage to give **5**. The 1,2-dihydrobenzocyclobutenols **2b** and **3b** also underwent thermal interconversion at 120 °C. However, since the 1,2-dihydrobenzocyclobutenol **2c** has a melting point of 136 °C, it remained unchanged on heating at 120 °C without solvent. On the other hand, when a dilute benzene- d_6 solution of **2c** in an NMR tube was heated at 120 °C, the conversion into the diastereomeric isomer **3c** occurred cleanly without formation of either the hydroxy ketone **1c** or 2-methylisobutyrophenone **5**, though a long time was required to reach a thermal equilibrium between **2c** and **3c**. The compound **3c**, having a melting point below 120 °C, was converted into **2c** on heating at 120 °C without solvent. In this case, a large amount of the hydroxy ketone **1c** was formed after heating for 20 h. However, **3c** was converted cleanly into a 1:1 mixture of **2c** and **3c** on

 Table 1
 Photochemical reaction of o-tolyl ketones 1a-f

Ketone 1			Yield (%)		
	Irradiation time/h ^a	Conversion $(\%)^{b}$	$(2+3)^{d}$	4	2:3 Ratio
a	2	66	17	43	4:1
b	4	74	47		3:2
c	5	50	37		4:3
d	15	97	95		3:2
e	15	100	95		6:5
f	15	94	95		1:1

^{*a*} A solution of the ketone (600 mg) in methanol (160 cm³) was irradiated with a 100 W high-pressure mercury lamp through a Pyrex filter. Ketones **1a–c** were irradiated under ice-cooling. Ketones **1d–f** were irradiated at room temperature. ^{*b*} Based on the amount of consumed starting material. ^{*c*} Isolated yield based on converted starting material. ^{*d*} Sum yield of **2** and **3**. These compounds could be isolated by repeated chromatography. ^{*e*} Determined by ¹H NMR on the fractions of the mixture after chromatography.

Table 2Thermal reaction of benzocyclobutenols 2a-f and 3a-f

heating in benzene- d_6 at 120 °C. The acetoxy-substituted 1,2dihydrobenzocyclobutenols **2d–f** and **3d–f** were also interconverted into each other on heating at 150 °C without solvent, together with the formation of **1d–f** and benzyl ketones **9a–c**. After 20 h, a thermal equilibrium between **2d–f** and **3d–f** was established. Results of the thermal reaction of **2** and **3** are given in Table 2.

As already mentioned, the 1,2-dihydrobenzocyclobutenol undergoes selective thermal opening of the cyclobutene ring to form the (E)-dienol. The thermal interconversion of the diastereomeric 1,2-dihydrobenzocyclobutenols 2 and 3 probably proceeds via the (E)-dienol intermediate 6 because the (E)-dienol species is sufficiently long-lived to be able to cyclize to give epimers.⁸ As shown in Table 2, the major reaction of the diastereomeric 1,2-dihydrobenzocyclobutenols 2 and 3 was the interconversion of diastereomers. Since the (E)-dienols formed from 2 and 3 are very congested because of the orientation of the bulky quarternary alkyl group, the possibility that β -hydroxy- and β -acetoxy ketones **1a**-**f** are formed from the (Z)-dienol cannot be ruled out. However, since the thermolysis of a dilute benzene- d_6 solution of 2c or 3c cleanly gave a 1:1 mixture of 2c and 3c, the 1,2-dihydrobenzocyclobutenols 2 and 3 would open selectively to the (E)-dienol because the (Z)dienol is very short-lived and undergoes a rapid 1,5-sigmatropic hydrogen shift to give the ketone $1.^9$ The resulting (E)-dienol undergoes recyclization to give 1,2-dihydrobenzocyclobutenols 2 and 3 along with intermolecular hydrogen transfers to give hydroxy and acetoxy ketones 1.10 The lower yields of hydroxy ketones 1a,b compared with 1c in the thermolysis of 3a-c without solvent at 120 °C may be due to a bulkier substituent in 3a,b than in 3c. The bulky substituent may prevent the approach of the initially formed (E)-dienols. The (E)-dienols formed from 1,2-dihydrobenzocyclobutenols having a relatively small substituent react with various dienophiles to give cycloadducts.⁵ However, when the 1,2-dihydrobenzocyclobutenol 2a or 3a was heated at 120 °C in the presence of dimethyl acetylenedicarboxylate or maleic anhydride, no adduct of the (E)-dienol 6 $(R^2 = Pr^i)$ with the dienophile could be detected but the interconversion between 2a and 3a was observed, perhaps due to steric congestion of 6 ($R^2 = Pr^i$) preventing the access of the dienophile.

The 2a-c: 3a-c ratios in the photochemical reaction of 1a-c increased with increasing size of \mathbb{R}^2 , whereas these ratios were 1:1 in the thermal reactions of 2a-c and 3a-c regardless of the size of \mathbb{R}^2 (Table 1 and 2). It is well known that benzocyclobutenols are prepared from the (*E*)-dienols generated by the irradiation of *o*-tolyl ketones.¹¹ The photochemically generated (*E*)-dienols from 1a-c in methanol must be solvated by meth-

		Temp/°C	Time/h	Yield (%) ^{<i>a</i>}				
butenol	Solvent			1	(2 + 3)	5	9	2 :3 Ratio ^{<i>b</i>}
2a	None	120	20	2	93	5		1:1
3a	None	120	20	5	84	3		1:1
2a	None	150	10		_	88		
3a	None	150	10		_	88		
2b	None	120	20	7	71			1:1
3b	None	120	20	6	71			1:1
2c	C_6D_6	120	80		100			1:1
3c	None	120	20	63	16	6		1:1
3c	C_6D_6	120	80		100			1:1
2d	None	150	20	20	72		8	7:4
3d	None	150	20	9	68		11	7:4
2e	None	150	20	7	62		11	3:2
3e	None	150	20	18	60		11	3:2
2f	None	150	20	11	66		2	2:3
3f	None	150	20	20	66		7	2:3

anol. The solvated (*E*)-dienols may cyclize to 2 and 3 in a ratio that depends on the size of $\mathbb{R}^{2,12}$ The 2d–f:3d–f ratios in the thermal reaction of 2d–f or 3d–f were also different from those in the photochemical reaction of 1d–f. In both thermal and photochemical reactions, the 2d–f:3d–f ratios increased with increasing size of \mathbb{R}^2 . Finally, the benzyl ketone 9 may be formed by a process involving homolytic cleavage between the aryl carbon and C-1 followed by hydrogen transfer (Scheme 3).¹³

Scheme 3 Condition: i, 150 °C.

Experimental

Mps are uncorrected and bps are oven temperatures in Kugelrohr distillation. IR spectra were recorded on a Hitachi 270-50 spectrometer for solutions in CCl₄. ¹H NMR spectra were obtained with a Bruker AC 200, a Bruker AC 300-P or a Bruker AM 400 spectrometer with CDCl₃ as a solvent. Tetramethylsilane was used as an internal standard and *J* values are given in Hz. ¹³C NMR spectra were measured on a Bruker AC 200 or a Bruker AC 300-P spectrometer with CDCl₃ as a solvent. An Ushio 100 W high-pressure mercury lamp was used as an irradiation source. Starting compounds **1a–c** were prepared by the condensation of *o*-methylisobutyrophenone with the aldehyde according to previously described methods.¹⁴ Compounds **1d–f** were prepared by refluxing **1a–c** in acetic anhydride in the presence of a catalytic amount of hydrochloric acid.

General procedure for the photolysis of 1a-f

A solution of 1 (600 mg) in methanol (160 cm³) was irradiated with a 100 W high-pressure mercury lamp through a Pyrex filter under argon for 2–15 h (see Table 1). The solvent was removed under reduced pressure, and the residue was chromatographed on silica gel [hexane–ethyl acetate (6:1 to 22:1)] to give 1,2dihydrobenzocyclobutenols 2 and 3 and the cyclopropane-1,2diol 4. The physical properties of 4 have already been described in a previous paper.⁶

(3*S**,1'*S**)-2-(1'-Hydroxy-1',2'-dihydrobenzocyclobuten-1'yl)-2,4-dimethylpentan-3-ol 2a. Mp 67–68 °C (from hexane) (Found: C, 77.1; H, 9.3. $C_{15}H_{22}O_2$ requires C, 76.9; H, 9.5%); v_{max}/cm^{-1} 3400br (OH); δ_H (300 MHz) 0.78 (3 H, s) and 1.13 (3 H, s) (1-H₃ and 2-Me), 0.99 (3 H, d, *J* 7) and 1.08 (3 H, d, *J* 7) (CH*Me*₂), 2.00 (1 H, m, *CHM*e₂), 2.96 (1 H) and 3.60 (1 H) (AB-pair, *J* 15, 2'-H₂), 2.97 (1 H, br s) and 3.90 (2 H, m) (2 × OH and 3-H) and 7.1–7.3 (4 H, m, ArH); δ_C (50 MHz) 16.3 (q), 16.9 (q), 21.7 (q) and 23.4 (q) (4 × Me), 29.3 (d, C-4), 42.4 (s, C-2), 43.7 (t, C-2'), 80.8 (d, C-3), 89.1 (s, C-1'), 121.9 (d), 123.5 (d), 127.1 (d), 129.2 (d), 142.5 (s) and 148.7 (s) (ArC).

(3*S**,1'*R**)-2-(1'-Hydroxy-1',2'-dihydrobenzocyclobuten-1'yl)-2,4-dimethylpentan-3-ol 3a. Mp 74–75 °C (from hexane) (Found: C, 77.1; H, 9.3. $C_{15}H_{22}O_2$ requires C, 76.9; H, 9.5%); ν_{max}/cm^{-1} 3450br (OH); δ_H (300 MHz) 0.71 (3 H, s) and 1.25 (3 H, s) (1-H₃ and 2-Me), 0.99 (3 H, d, J 7) and 1.06 (3 H, d, J 7) (CHMe₂), 2.00 (1 H, m, CHMe₂), 3.03 (1 H) and 3.55 (1 H) (AB-pair, J 15, 2'-H₂), 3.01 (1 H, br s, OH), 3.78 (1 H, m, 3-H), 4.10 (1 H, br s, OH) and 7.1–7.3 (4 H, m, ArH); $\delta_{\rm C}$ (50 MHz) 16.4 (q), 17.3 (q), 21.4 (q) and 23.2 (q) (4 × Me), 29.5 (d, C-4), 42.5 (s, C-2), 43.1 (t, C-2'), 80.3 (d, C-3), 89.6 (s, C-1'), 121.9 (d), 123.5 (d), 127.1 (d), 129.2 (d), 142.5 (s) and 148.3 (s) (ArC).

(3*S**,1'*S**)-2-(1'-Hydroxy-1',2'-dihydrobenzocyclobuten-1'yl)-2-methylpentan-3-ol 2b. Mp 96–97 °C (from hexane) (Found: C, 76.4; H, 9.2. $C_{14}H_{20}O_2$ requires C, 76.3; H, 9.2%); ν_{max}/cm^{-1} 3300br (OH); δ_H (200 MHz) 0.75 (3 H, s) and 0.92 (3 H, s) (1-H₃ and 2-Me), 0.99 (3 H, t, *J* 7, 5- H₃), 1.3–1.6 (2 H, m, 4-H₂), 2.88 (1 H) and 3.53 (1 H) (AB-pair, *J* 15, 2'-H₂), 3.74 (1 H, m, 3-H), 3.14 (1 H, br s) and 4.02 (1 H, br s) (2 × OH) and 7.1–7.3 (4 H, m, ArH); δ_C (50 MHz) 11.3 (q), 16.8 (q) and 21.8 (q) (3 × Me), 24.6 (t, C-4), 41.3 (s, C-2), 43.5 (t, C-2'), 80.1 (d, C-3), 88.0 (s, C-1'), 121.9 (d), 123.2 (d), 126.8 (d), 128.9 (d), 142.4 (s) and 148.6 (s) (ArC).

(3*S**,1′*R**)-2-(1′-Hydroxy-1′,2′-dihydrobenzocyclobuten-1′yl)-2-methylpentan-3-ol 3b. Mp 104–105 °C (from hexane) (Found: C, 76.4; H, 9.2. $C_{14}H_{20}O_2$ requires C, 76.3; H, 9.2%); v_{max}/cm^{-1} 3300br (OH); $\delta_{\rm H}$ (200 MHz) 0.69 (3 H, s) and 1.14 (3 H, s) (1-H₃ and 2-Me), 1.05 (3 H, t, *J* 7, 5-H₃), 1.4–1.8 (2 H, m, 4-H₂), 3.03 (1 H) and 3.57 (1 H) (AB-pair, *J* 15, 2′-H₂), 3.65 (1 H, m, 3-H), 4.27 (1 H, br s) and 5.11 (1 H, br s) (2 × OH) and 7.1–7.3 (4 H, m, ArH); $\delta_{\rm C}$ (50 MHz) 11.1 (q), 16.6 (q) and 21.6 (q) (3 × Me), 24.8 (t, C-4), 41.7 (s, C-2), 42.9 (t, C-2′), 79.3 (d, C-3), 88.8 (s, C-1′), 121.9 (d), 123.5 (d), 127.1 (d), 129.1 (d), 142.4 (s) and 148.4 (s) (ArC).

(2*S**,1′*S**)-3-(1′-Hydroxy-1′,2′-dihydrobenzocyclobuten-1′yl)-3-methylbutan-2-ol 2c. Mp 136–137 °C (from hexane) (Found: C, 75.5; H, 8.7. $C_{13}H_{18}O_2$ requires C, 75.7; H, 8.8%); ν_{max}/cm^{-1} 3400br (OH); δ_{H} (300 MHz) 0.74 (3 H, s) and 1.05 (3 H, s) (4-H₃ and 3-Me), 1.22 (3 H, d, *J* 7, 1-H₃), 2.98 (1 H) and 3.63 (1 H) (AB-pair, *J* 15, 2′-H₂), 3.69 (1 H, br s) and 3.55 (1H, br s) (2 × OH), 4.19 (1 H, q, *J* 7, 2-H) and 7.1–7.3 (4 H, m, ArH); δ_{C} (75 MHz) 15.5 (q), 18.4 (q) and 22.0 (q) (3 × Me), 41.4 (s, C-3), 43.9 (t, C-2′), 73.9 (d, C-2), 88.4 (s, C-1′), 121.9 (d), 123.5 (d), 127.1 (d), 129.3 (d), 142.4 (s) and 148.5 (s) (ArC).

(2*S**,1′*R**)-3-(1′-Hydroxy-1′,2′-dihydrobenzocyclobuten-1′yl)-3-methylbutan-2-ol 3c. Mp 84–85 °C (from hexane) (Found: C, 75.5; H, 8.7. C₁₃H₁₈O₂ requires C, 75.7; H, 8.8%); v_{max} /cm⁻¹ 3450br (OH); $\delta_{\rm H}$ (300 MHz) 0.62 (3 H, s) and 1.15 (3 H, s) (4-H₃ and 3-Me), 1.16 (3 H, d, *J* 7, 1-H₃), 3.02 (1 H) and 3.55 (1 H) (AB-pair, *J* 15, 2′-H₂), 3.85 (1 H, br s) and 4.20 (1 H, br s) (2 × OH), 4.07 (1 H, q, *J* 7) and 7.1–7.3 (4 H, m, ArH); $\delta_{\rm C}$ (50 MHz) 15.5 (q), 18.4 (q) and 21.7 (q) (3 × Me), 41.5 (s, C-3), 42.8 (t, C-2′), 73.2 (d, C-2), 88.8 (s, C-1′), 121.8 (d), 123.5 (d), 127.1 (d), 129.2 (d), 142.4 (s) and 148.3 (s) (ArC).

(3*S**,1′*S**)-3-Acetoxy-2-(1′-hydroxy-1′,2′-dihydrobenzocyclobuten-1′-yl)-2,4-dimethylpentane 2d. Mp 72–73 °C (from hexane) (Found: C, 74.0; H, 8.9. $C_{17}H_{24}O_3$ requires C, 73.9; H, 8.8%); ν_{max} /cm⁻¹ 3500br (OH) and 1720 (C=O); δ_H (200 MHz) 0.90 (3 H, s) and 1.22 (3 H, s) (1-H₃ and 2-Me), 0.96 (3 H, d, *J* 7) and 1.01 (3 H, d, *J* 7) (CH*Me*₂), 2.12 (3 H, s, COMe), 2.0–2.2 (1 H, m, *CHMe*₂), 3.31 (1 H, br s, OH), 2.83 (1 H) and 3.59 (1 H) (AB-pair, *J* 15, 2′-H₂), 5.18 (1 H, d, *J* 3, 3-H) and 7.1–7.3 (4 H, m, ArH); δ_C (50 MHz) 17.7 (q), 18.1 (q), 21.1 (q), 21.3 (q) and 23.3 (q) (5 × Me), 28.7 (d, C-4), 43.2 (s, C-2), 43.4 (t, C-2′), 79.9 (d, C-3), 86.1 (s, C-1′), 122.1 (d), 123.3 (d), 127.0 (d), 129.1 (d), 143.0 (s) and 148.2 (s) (ArC) and 172.0 (s, C=O).

 $(3S^*,1'R^*)$ -3-Acetoxy-2-(1'-hydroxy-1',2'-dihydrobenzocyclobuten-1'-yl)-2,4-dimethylpentane 3d. Mp 67–68 °C (from hexane) (Found: C, 74.1; H, 8.8. C₁₇H₂₄O₃ requires C, 73.9; H, 8.8%); v_{max} cm⁻¹ 3500br (OH) and 1750 (C=O); δ_{H} (200 MHz) 0.90 (3 H, s) and 1.14 (3 H, s) (1-H₃ and 2-Me), 0.97 (3 H, d, *J* 7) and 0.98 (3 H, d, *J* 7) (CH*Me*₂), 2.14 (3 H, s, COMe), 2.1–2.3 (1 H, m, C*H*Me₂), 2.67 (1 H, br s, OH), 2.99 (1 H) and 3.66 (1 H) (AB-pair, *J* 15, 2'-H₂), 5.14 (1 H, d, *J* 2, 3-H) and 7.1–7.3 (4 H, m, ArH); δ_{C} (50 MHz) 17.4 (q), 20.3 (q), 20.6 (q), 21.2 (q) and 23.2 (q) (5 × Me), 29.2 (d, C-4), 43.1 (s, C-2), 43.8 (t, C-2'), 81.0 (d, C-3), 86.9 (s, C-1'), 121.8 (d), 123.4 (d), 127.0 (d), 129.1 (d), 142.4 (s) and 148.7 (s) (ArC) and 172.0 (s, C=O).

(3*S**,1′*R**)-3-Acetoxy-2-(1′-hydroxy-1′,2′-dihydrobenzocyclobuten-1′-yl)-2-methylpentane 2e. Mp 83–84 °C (from hexane) (Found: C, 73.3; H, 8.6. $C_{16}H_{22}O_3$ requires C, 73.3; H, 8.5%); v_{max} /cm⁻¹ 3500br (OH) and 1720 (C=O); δ_H (200 MHz) 0.82 (3 H, s) and 1.19 (3 H, s) (1-H₃ and 2-Me), 0.91 (3 H, t, *J* 7, 5-H₃), 1.66 (2 H, m, 4-H₂), 2.11 (3 H, s, COMe), 2.83 (1 H) and 3.58 (1 H) (AB-pair, *J* 15, 2′-H₂), 3.55 (1H, br s, OH), 5.17 (1 H, dd, *J* 3 and 10, 3-H) and 7.1–7.3 (4 H, m, ArH); δ_C (50 MHz) 10.8 (q), 17.7 (q), 21.1 (q) and 21.3 (q) (4 × Me), 22.8 (t, C-4), 42.5 (s, C-2), 43.1 (t, C-2′), 79.2 (d, C-3), 85.6 (s, C-1′), 122.1 (d), 123.2 (d), 126.9 (d), 129.0 (d), 142.8 (s) and 148.1 (s) (ArC) and 172.1 (s, C=O).

(3*S**,1′*S**)-3-Acetoxy-2-(1′-hydroxy-1′,2′-dihydrobenzocyclobuten-1′-yl)-2-methylpentane 3e. Mp 72–73 °C (from hexane) (Found: C, 73.4; H, 8.5. $C_{16}H_{22}O_3$ requires C, 73.3; H, 8.5%); v_{max}/cm^{-1} 3500br (OH) and 1750 (C=O); δ_H (200 MHz) 0.85 (3 H, s) and 1.08 (3 H, s) (1-H₃ and 2-Me), 0.88 (3 H, t, *J* 7, 5-H₃), 1.67 (2 H, m, 4-H₂), 2.11 (3 H, s, COMe), 2.79 (1 H, br s, OH), 2.96 (1 H) and 3.63 (1 H) (AB-pair, *J* 15, 2′-H₂), 5.21 (1 H, dd, *J* 1 and 3, 3-H) and 7.1–7.3 (4 H, m, ArH); δ_C (50 MHz) 10.9 (q), 19.7 (q), 20.3 (q) and 21.2 (q) (4 × Me), 23.7 (t, C-4), 42.5 (s, C-2), 44.2 (t, C-2′), 79.9 (d, C-3), 86.5 (s, C-1′), 122.0 (d), 123.4 (d), 127.0 (d), 129.2 (d), 142.7 (s) and 148.8 (s) (ArC) and 171.2 (s, C=O).

(2*S**,1'*S**)-2-Acetoxy-3-(1'-hydroxy-1',2'-dihydrobenzocyclobuten-1'-yl)-3-methylbutane 2f. Mp 79–80 °C (from hexane) (Found: C, 72.7; H, 8.2. $C_{15}H_{22}O_3$ requires C, 72.6; H, 8.1%); v_{max}/cm^{-1} 3630 (OH) and 1750 (C=O); δ_H (200 MHz) 0.89 (3 H, s) and 1.13 (3 H, s) (4-H₃ and 3-Me), 1.25 (3 H, d, *J* 7, 1-H₃), 2.04 (3 H, s, COMe), 2.88 (1 H) and 3.66 (1 H) (AB-pair, *J* 15, 2'-H₂), 3.07 (1 H, br s, OH), 5.34 (1 H, q, *J* 7, 2-H) and 7.1–7.3 (4 H, m, ArH); δ_C (50 MHz) 15.6 (q), 17.2 (q), 21.0 (q) and 21.6 (q) (4 × Me), 42.2 (s, C-3), 43.7 (t, C-2'), 74.0 (d, C-2), 85.8 (s, C-1'), 122.0 (d), 123.4 (d), 127.1 (d), 129.2 (d), 142.9 (s) and 148.6 (s) (ArC) and 171.0 (s, C=O).

(2*S**,1'*R**)-3-Acetoxy-3-(1'-hydroxy-1',2'-dihydrobenzocyclobuten-1'-yl)-3-methylbutane 3f. Bp 96–98 °C at 0.3 mmHg (Found: C, 72.6; H, 8.2. $C_{15}H_{22}O_3$ requires C, 72.6; H, 8.1%); ν_{max}/cm^{-1} 3470br (OH) and 1740 (C=O); δ_H (200 MHz) 0.87 (3 H, s) and 1.10 (3 H, s) (4-H₃ and 3-Me), 1.25 (3 H, d, *J* 7, 1-H₃), 2.06 (3 H, s, COMe), 2.74 (1 H, br s, OH), 2.95 (1 H) and 3.64 (1 H) (AB-pair, *J* 15, 2'-H₂), 5.22 (1 H, q, *J* 7, 2-H) and 7.1–7.3 (4 H, m, ArH); δ_C (50 MHz) 16.0 (q), 19.4 (2q) and 21.4 (q) (4 × Me), 41.8 (s, C-3), 44.1 (t, C-2'), 75.2 (d, C-2), 86.2 (s, C-1'), 122.0 (d), 123.3 (d), 126.9 (d), 129.1 (d), 142.5 (s) and 148.6 (s) (ArC) and 170.3 (s, C=O).

Pyrolysis of 1',2'-dihydrobenzocyclobutenols 2a-f and 3a-f

1',2'-Dihydrobenzocyclobutenol **2a–c** or **3a–c** (100 mg) was sealed in an 8 mm diameter Pyrex tube under argon. The tube was heated at 120 °C for 20 h. The ¹H NMR analysis of the mixture revealed that interconversion occurred between **2a–c** and **3a–c**. The mixture was chromatographed on silica gel and eluted with a mixture of hexane and ethyl acetate (4:1 to 6:1) to give two isomeric 1,2-dihydrobenzocyclobutenols **2a–c** and **3a–c**, hydroxy ketone **1a–c** and *o*-methylisobutyrophenone **5**. The same treatment of 1,2-dihydrobenzocyclobutenol 2d-f or 3d-f (100 mg) but at 150 °C for 20 h gave acetoxy ketone 1d-f, 1,2-dihydrobenzocyclobutenol 2d-f and 3d-f and 4-acetoxy-3,3-dimethyl-1-phenylbutan-2-one 9a-c. 1,2-Dihydrobenzocyclobutenol 2c or 3c (*ca*. 10 mg) in benzene- d_6 (*ca*. 0.5 cm³) was placed in a 5 mm diameter NMR tube and degassed by freeze-pump-thaw cycles. The tube was heated at 120 °C for 80 h. The ¹H NMR spectrum of the mixture showed only peaks due to a 1:1 mixture of 2c and 3c.

4-Acetoxy-3,3,5-trimethyl-1-phenylhexan-2-one 9a. Bp 97–98 °C at 0.4 mmHg (Found: C, 73.6; H, 8.8. $C_{17}H_{24}O_3$ requires C, 73.9; H, 8.8%); v_{max}/cm^{-1} 1740 (ester C=O) and 1720 (C=O); $\delta_{\rm H}$ (300 MHz) 0.86 (3 H, d, *J* 7) and 0.89 (3 H, d, *J* 7) (6-H₃ and 5-Me), 1.13 (3 H, s) and 1.22 (3 H, s) (3-Me₂), 1.90 (1 H, d × sept, *J* 6 and 7, 5-H), 2.09 (3 H, s, COMe), 3.81 (1 H) and 3.88 (1 H) (AB-pair, *J* 16, 1-H₂), 5.20 (1 H, d, *J* 6, 4-H) and 7.2–7.4 (5 H, m, ArH); $\delta_{\rm C}$ (75 MHz) 18.5 (q), 20.1 (q), 20.8 (q), 21.5 (q) and 22.7 (q) (5 × Me), 29.6 (d, C-5), 44.5 (t, C-1), 52.3 (s, C-3), 80.7 (d, C-4), 126.7 (d), 128.4 (d), 129.6 (d) and 134.3 (s) (ArC), 170.7 (s, OC=O) and 210.4 (s, C=O).

4-Acetoxy-3,3-dimethyl-1-phenylhexan-2-one 9b. Bp 86–88 °C at 0.3 mmHg (Found: C, 73.2; H, 8.5. $C_{16}H_{22}O_3$ requires C, 73.3; H, 8.5%); v_{max}/cm^{-1} 1740 (ester C=O) and 1720 (C=O); $\delta_{\rm H}$ (200 MHz) 0.86 (3 H, t, *J* 7, 6-H₃), 1.16 (3 H, s) and 1.19 (3 H, s) (3-Me₂), 1.4–1.5 (2 H, m, 5-H₂), 2.07 (3 H, s, COMe), 3.82 (2 H, s, 1-H₂), 5.25 (1 H, dd, *J* 5 and 8, 4-H) and 7.2–7.3 (4 H, m, ArH); $\delta_{\rm C}$ (50 MHz) 10.8 (q), 20.3 (q), 21.2 (q) and 23.5 (q) (4 × Me), 20.8 (t, C-5), 44.5 (t, C-1), 52.1 (s, C-3), 78.4 (d, C-4), 126.7 (d), 128.4 (d), 129.6 (d) and 134.4 (s) (ArC), 170.7 (s, ester C=O) and 210.1 (s).

4-Acetoxy-3,3-dimethyl-1-phenylpentan-2-one 9c. Bp 96– 98 °C at 0.4 mmHg (Found: C, 72.7; H, 8.2. $C_{15}H_{22}O_3$ requires C, 72.6; H, 8.1%); v_{max}/cm^{-1} 1740 (ester C=O) and 1720 (C=O); $\delta_{\rm H}$ (200 MHz) 1.16 (3 H, d, J 7, 5-H₃), 1.17 (3 H, s) and 1.19 (3 H, s) (3-Me₂), 1.97 (3 H, s, COMe), 3.79 (2 H, s, 1-H₂), 5.26 (1 H, q, J 7, 4-H) and 7.1–7.3 (5 H, m, ArH); $\delta_{\rm C}$ (50 MHz) 14.9 (q), 19.6 (q), 20.8 (q) and 21.0 (q) (4 × Me), 44.2 (t, C-1), 51.4 (s, C-3), 74.0 (d, C-4), 126.6 (d), 128.3 (d), 129.5 (d) and 134.2 (s) (ArC), 170.1 (s, ester C=O) and 210.1 (s, C=O).

Pyrolysis of 2a and 3a in the presence of dienophile

A solution of 100 mg of **2a** or **3a** and 2 equiv. of dimethyl acetylenedicarboxylate or maleic anhydride in 1 cm³ of benzene was sealed in a glass tube. The tube was degassed by freeze–pump–thaw cycles and heated at 120 °C for 20 h. The solvent was removed and the residue was fractionated by chromatography on silica gel using a 4:1 mixture of hexane and ethyl acetate. The ¹H NMR spectrum of each of the fractions revealed that **2a** and **3a** were interconverted, while no adduct of the dienol arising from **2a** or **3a** with dienophile was detected.

Crystallographic analysis of 2a, 2f and 3d

Data were collected on a MAC Science DIP3000 diffractometer with Mo-Ka radiation ($\lambda = 0.71073$ Å) at 298 K and the structure was solved by direct methods. Crystal data for **2a**: C₁₅H₂₂O₂, M = 234.37, orthorhombic, a = 7.8840(5), b =12.514(1), c = 14.297(1) Å, V = 1410.6(2) Å³, Z = 4, space group $P2_{12}_{12}_{12}_{11}$, $\mu = 0.067$ mm⁻¹. The crystal used had dimensions of $0.5 \times 0.5 \times 0.4$ mm. The final cycle of full-matrix least-squares refinement was based on 1747 observed reflections [$I > 3\sigma(I)$] and 242 variable parameters with $R(R_w) = 0.049$ (0.062). Crystal data for **2f**: C₁₅H₂₂O₃, M = 248.32, monoclinic, a =11.308(2), b = 9.460(1), c = 13.187(1) Å, V = 1402.4 (3) Å³, Z = 4, space group $P2_1/n$, $\mu = 0.075$ mm⁻¹. The crystal used had dimensions of $0.3 \times 0.3 \times 0.28$ mm. The final cycle of fullmatrix least-squares refinement was based on 1920 observed reflections $[I > 3\sigma(I)]$ and 243 variable parameters with $R(R_w) = 0.053$ (0.067). Crystal data for **3d**: C₁₇H₂₄O₃, M = 276.38, monoclinic, a = 10.106(1), b = 25.218(2), c = 12.298(2) Å, V = 3134.2(2) Å³, Z = 8, space group $P2_1/n$, $\mu = 0.074$ mm⁻¹. The crystal used had dimensions of $0.15 \times 0.15 \times 0.15$ mm. The final cycle of full-matrix least-squares refinement was based on 2941 observed reflections $[I > 3\sigma(I)]$ and 415 variable parameters with $R(R_w) = 0.054$ (0.071).

CCDC reference number 207/396. See http://www.rsc.org/ suppdata/p1/a9/a908326j for crystallographic files in .cif format.

References

- 1 J. L. Charlton and M. M. Alauddin, *Tetrahedron*, 1987, 43, 2873.
- 2 M. P. Cava and A. A. Deana, J. Am. Chem. Soc., 1959, 81, 4266;
 L. A. Errede, J. Am. Chem. Soc., 1961, 83, 949.
- 3 W. Oppolzer, *Synthesis*, 1978, 793.
- 4 (a) B. J. Arnold, P. G. Sammes and T. W. Wallace, J. Chem. Soc., Perkin Trans. 1, 1974, 409; (b) B. J. Arnold, P. G. Sammes and T. W. Wallace, J. Chem. Soc., Perkin Trans. 1, 1974, 415.
- 5 J. L. Charlton, G. L. Plourde, K. Koh and A. S. Secco, *Can. J. Chem.*, 1990, **68**, 2022; J. L. Charlton, K. Koh and G. L. Plourde,

Can. J. Chem., 1990, **68**, 2028; J. L. Charlton and S. Maddaford, *Can. J. Chem.*, 1993, **71**, 827; J. L. Charlton, S. Maddaford, K. Koh, S. Boulet and M. H. Saunders, *Tetrahedron: Asymmetry*, 1993, **4**, 645; J. L. Charlton, D. Bogucki and P. Guo, *Can. J. Chem.*, 1995, **73**, 1463; D. M. Coltart and J. L. Charlton, *Can. J. Chem.*, 1996, **74**, 88.

- 6 M. Yoshioka, S. Miyazoe and T. Hasegawa, J. Chem. Soc., Perkin Trans. 1, 1993, 2781.
- 7 K. Iida, E. Kawata, K. Komada, M. Saito, S. Kumakura and M. Yoshioka, *Acta Crystallogr., Sect. C*, 1998, **54**, 1938.
- 8 P. J. Wagner, D. Subrahmanyan and B.-S. Park, J. Am. Chem. Soc., 1991, 113, 709.
- 9 R. Haag, J. Wirz and P. J. Wagner, Helv. Chim. Acta, 1977, 60, 2595.
- 10 K. Iida, M. Saito and M. Yoshioka, J. Org. Chem., 1999, 64, 7407.
- M. Sobczak and P. J. Wagner, *Tetrahedron Lett.*, 1998, 39, 2523;
 P. J. Wagner, M. Sobczak and B.-S. Park, *J. Am. Chem. Soc.*, 1998, 120, 2488.
- 12 P. J. Wagner, Acc. Chem. Res., 1971, 4, 168.
- 13 O. L. Chapman, U.-P. E. Tsou and J. W. Johnson, J. Am. Chem. Soc., 1987, 109, 553.
- 14 M. Yoshioka, T. Suzuki and M. Oka, Bull. Chem. Soc. Jpn., 1984, 57, 1604; M. Yoshioka, K. Nishizawa, M. Arai and T. Hasegawa, J. Chem. Soc., Perkin Trans. 1, 1991, 541.

Paper a908326j